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Abstract

This report presents the theoretical development,
evaluation, and applications of a new nonparametric family
of continuous, differentiable, sample distribution func-
tions. Given a random sample of independent, identically
distributed, random variables, estimators are constructed
which converge uniformly to the underlying distribution.

A smoothing routine is proposed which preserves the dis-
tribution function properties of the estimators. Using
mean integrated square error as a criterion, the new esti-
mators are shown to compare favorably against the empirical
distribution function. As density estimators, their
derivatives are shown to be competitive with other con-
tinuous approximations. Numerous graphical examples are
given. New goodness of fit tests for the normal and
extreme value distributions are proposed based on the new
estimators. Eight new goodness of fit statistics are
developed. Extensive Monte Carlo studies are conducted to
determine the critical values and powers for tests when the
null hypothesis is completely specified and when the
parameters of the null hypothesis are estimated. These
tests were shown to be comparable with or superior to tests

currently used. Forty-eight new estimators of the location

xiii




parameter of a symmetric distribution are proposed based

on the new models. For mild deviations from the normal
distribution, some new estimators are shown to be superior
to established robust estimators. Robust characteristics

of the new estimators are discussed.
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NONPARAMETRIC ESTIMATION OF DISTRIBUTION AND

DENSITY FUNCTIONS WITH APPLICATIONS

I. Introduction

This dissertation develops and evaluates new non-
parametric techniques for use in data analysis. A new
family of nonparametric, continuous, differentiable sample
distribution functions is proposed to model univariate
random variables with continuous, unimodal densities. Much
of the motivation for this research effort was the dominance
of the empirical distribution function (EDF) as a basis for
goodness of fit tests and robust estimation of parameters.
This research presents a continuous, differentiable alterna-
tive to the EDF and its applications to statistical infer-
ence.

The EDF has long served as the mainstay for sta-
tistical inference. Only recently, as in a paper by Green
and Hegazy, have other sample distribution functions even
been considered as bases for goodness of fit tests
(Ref 29). These alternatives are still classical step
functions and are shown to generate powerful goodness of
fit tests. The authors of the Princeton study on robust

estimation of a location parameter, while using the EDF




i exclusively in their estimators, are careful to point out:

"We ought not to close our eyes to other definitions of the
f empirical cumulative" (Ref 5:225). Their results, using
the EDF, have given a large impetus to the search for
robust estimators. Should not, then, a continuous, dif-
ferentiable, alternative to the EDF offer the potential

for improvement in goodness of fit testing and robust

parameter estimation? This investigation shows that the
new nonparametric family is a powerful tool for modeling
univariate random variables, for goodness of fit tests and

for robust estimation of the location parameter of a

symmetric distribution.
Our analysis begins with the historical background

of sample distribution functions given in Chapter II.

Plotting positions for random samples and their relation-
ship to sample distribution functions are discussed.
Chapter III presents the theoretical development of the new

family of nonparametric distribution functions. We demon-

strate that the properties of a distribution function are
preserved and discuss the conditions for uniform conver-
gence. A routine is proposed to generate a smoother
approximation for both the distribution and density func-
tions. Six specific nonparametric models are generated
from the new family and used for the remainder of the
analysis. Three of these models are adaptive based on the

estimated tail length of the underlying distribution from

!
2 |




a random sample. Chapter IV examines the literature for
techniques of distribution and density function estima-
tion. A Monte Carlo analysis is then conducted to compare
the distribution and density function estimates using mean
integrated square error as the criterion. While not spe-
cifically designed as density function estimates, the new
nonparametric models are shown to be competitive with or
superior to two other continuous density function esti-
mates. Several examples of the nonparametric estimates

- are graphically displayed. The chapter concludes with a
discussion of a continuous nonparametric estimation of the
hazard function which results from the differentiability

of the distribution function estimate. Chapter V addresses
the goodness of fit problem. After a brief historical
survey, we propose eight new goodness of fit statistics.

An extensive Monte Carlo analysis is conducted to determine
the critical values for each test statistic for null dis-
tributions which are completely specified and when param-
eters are estimated. Two null distributions, the normal
and the extreme value distributions, are considered. Sub-
sequent Monte Carlo power studies show that the new tests
are competitive with or superior to certain established
goodness of fit tests. Chapter VI describes techniques

for parameter estimation using the new models. Following

a brief survey of location parameter estimation and robust-

ness, we propose forty-eight new estimators of the location

3




parameter of a symmetric distribution. The estimators
are compared with the sample mean, sample median, and
certain robust estimates proposed by Huber and Hampel.
The comparisons are made using standardized empirical vari=~
ances determined by Monte Carlo simulation, maximum and 1
average relative deficiencies, and robust characteristics

based on approximated influence curves over nine alterna-

tive symmetric distributions. For relatively mild devia-
tions from the normal distribution, cértain new nonpara-
metric estimators are shown to have smaller deficiencies
than the other estimators included in the study. The final
chapter summarizes the major results of this research
effort and also indicates potential applications of the
new nonparametric models. We conclude with a discussion

of areas for future research.




II. Background

Sample Distribution Functions (SDFs)

One of the initial steps in data analysis is the
formulation of a sample cumulative distribution function.
The most common of these is the empirical distribution
function (EDF) whose properties are listed in Gibbons

(Ref 27:73-75). Let Sn(x) be the EDF.

0 x < x(l,
sn(x) = i/n x(i) < x < X(i+l) i=l,...,n-1
1 x > X(n)

It is easy to construct other sample distribution
functions which are also step functions. Let
{gi} i=l,...,n be a nondecreasing sequence of real numbers

on [0,1] with 9, = 1. Now define

0 X < X(l)
Gn(x) = 95 X(i) < x < X(i+l) i=l,...,n-1
1 X > x(n)

Clearly Gn(x) possesses all of the properties of a dis-
tribution function.
However, if we relax the property that

lim G _(x) = 0 or 1lim G_(x) = 1, we get improper sample
X+~ n X+

distribution functions. An example is
5




0 X

<X
i) <x <X

(i
n/{(n+l) x >X

G (x) = | i/(n+l) X i=1,...,n-1

(i+1)

(n)

It can be easily shown that the improper distribution
function just defined has the same absolute convergence
properties as the empirical distribution function. At
this point, let us defer a discussion of the properties of
either proper or improper distribution functions.

Several authors have considered specific alterna-
tives to the empirical distribution function. In choosing
a goodness of fit criterion, Pyke used the mean ranks as
the basis for his modified empirical distribution function
(Refs 10,68). Vogt also considered the mean ranks in his
evaluation of maximal deviations from the EDF and his
variant of the EDF (Ref 98). 1In a goodness of fit test
for a completely specified continuous symmetric distribu-
tion, Schuster proposes an unbiased estimator Gn(x) as the
average of the EDF and another EDF based on reflecting the
sample about the center of symmetry (Ref 82:1). He later
considers the estimate of the distribution function when
the center of symmetry is unknown. For a suitable choice
of an estimator of the center of symmetry, it can be shown
that the estimate formed by reflection about the estimated

center of symmetry is asymptotically better than the EDF

in specific cases (Ref 83). 1In testing for symmetry,




Rothman and Woodroofe required their sample distribution

function to be invariant under the transformation x+-x.

Thus, they used 2F*(x) = Sn(x+) + 5_(x7) vhere S_ is the

EDF (Ref 76). Hill and Rao generalized this sample dis-

tribution function :in another article investigating the

center of symmetry. They point out that the invariance

(a)

property is preserved, if F; is replaced by Fn where
0<a<l and j
+ - 1
aFn(x ) + (l-a)Fn(x ) x<0
(a) -
(l—a)Fn(x ) + aF (x) x>0

for center of symmetry zero (Ref 36).

Forming continuous sample distribution functions
is a simple task. Let {X(i)} i=l,...,n be an ordered
sample. Choose a plotting rule for the {X(i)} to form the
set of plotted values {G(X(i))} i=l,...,n. A linear inter-
polation of the G(X(i)) values for each interval

[X ,,x ] gives a continuous function defined on

(1 (i+1)

o If G(X =0 and G(X n))=1, then the function

X2y Xmy ! (1)) (
is a proper distribution function. If not, we can con-
struct extrapolation points X(O) and X(n+l) such that

G(X

}=0 and G(X )=1. Linear interpolation based on

(0) {n+l1)
these extrapolated points again results in a continuous
proper sample distribution function. Spline smoothing or

exponential extrapolation for the X(O) and x(n+l) points




are two other methods proposed by Andrews, et al., for
forming alternatives to the EDF (Ref 5:224-225).

Whether we use a step function or a continuous
one, the values of the sample distribution function at the
observed data points can be used to estimate the under-
lying cumulative distribution function. The next section
will examine several choices for these values, their use
as plotting positions, and the relationship between plot-

ting positions and sample distribution functions. !

Plotting Positions

Used in graphical data analysis, plotting positions
represent the estimated value of the underlying probabil~

ity distribution function. As mentioned earlier, these

plotting positions could be the values of some sample dis-
tribution functions at the observed data points.

As early as 1930, Hazen recognized that the values
of the EDF were inappropriate for plotting annual flood
data. He chose the midpoint of the jumps of the EDF as
his plotting position (Ref 35}). A limited survey comparing
various choices of plotting positions was undertaken by
Kimball (Ref 45). Some choices were based on specific
underlying probability distributions. White proposes
plotting positions for the Weibull distribution based on
the expected value of reduced log-Weibull order statistics

(Ref 107) . For the normal distribution, Blom suggests




plotting the ith order statistic at (i-.375)/(n+.25). He
argues that this plotting rule
. « . leads to a practically unbiased estimate
of 0 (the shape parameter) with a mean square devia-
tion which is about the same as that of the unbiased
best linear estimate.
He also states that Hazen's choice of plotting position
for the normal ". . . leads to a biased estimate of ¢

with nearly minimum mean square deviation about o" (Ref 7).

While the previous discussion concerned some isolated

plotting conventions, we now examine some basic systems

of plotting positions,

Rank Distributions. Let X X .be an ¥

(1) """ (n)
ordered sample from an underlying probability distribution

F(x). The distribution of F(X(i)) i=l,...,n is the rank

distribution. It can be shown that this distribution is
a beta distribution for each i and is independent of the
underlying distribution F, so long as F is differentiable
(Refs 19, 44). A plotting position for the ith order sta-
tistic can be thought of as a point on the ith rank dis-
tribution. The question arises as to what point on the

rank distribution should be used as a representative

choice for F(x(i)). 7 <ee measures of central tendency,
the mean, median, and mode, are all contenders.

E(F(X ))) = i/(n+l), the mean rank, has the property that

(i
it divides [0,1] into n+l equally probable intervals. The

median rank, approximated by (i-.3)/(n+.4), can be used




as a better representative of skewed distributions, which
most rank distributions are. For a unimodal distribution,
the mode rank, (i-1)/(n-l), approximates the maximum of

the probability density function of the rank distribution.

Thus, the selection of a plotting position is equivalent

to selecting a point from a beta distribution.

Blom's Formula. Plotting positions can also be

derived from rather general expressions. Given choices )

of o and 8 such that «, B8<1l, a plotting position, Gi’ can

be defined as:

Gy = nmacgel
For specific choices of o and 8, see reference 7. From
the above formula, one can easily generate the same plot-
ting positions in the rank distributions by judicious
choices of o and 8.

A slightly more general plotting position can be
defined by

1+
Gg. = ¢

i niB where -1<a<f<1

Once again, this formula allows for generation of common
plotting positions by correct choices of a and B.

Table II.l1 summarizes some common plotting conventions.

10




TABLE II.1

PLOTTING POSITIONS OF THE ith ORDER STATISTIC

Formula Description
1. i/n value of the empirical distribution
function
2. 1i/(n+l1) mean rank
3. (i-1)/(n-1) mode rank
4. (i-.3)/(n+.4) median rank (approximation)
5. (i-.5)/n midpoint of the jump of the empiri-~
cal distribution function
6. [n(2i-l)—l]/(n2-l) average of the mean and mode ranks
7. (i-.375)/(n+.25) efficient approximation for the
normal distribution
8. (i-a)/(n-o-B+1)
(a,B<1) Blom's general plotting position
9. (i+a)/(n+B)

-1<a<B<1

a more general plotting position




While the choice of plotting position is subject

to the analyst's discretion, one must be aware of the prob-

lem of choosing plotting positions and generating a sample
distribution function based on these positions. Once a
plotting position is picked, any number of sample distribu-
tion functions can be constructed. However, given a
specific plotting rule (midpoint of the jumps, limit from
the right, etc.), a sample distribution step function

uniquely determines the plotting positions.

12




III. New Nonparametric Sample Distribution Functions

Introduction

Having already seen the uses of various discrete
plotting positions and their relationship to sample dis-
tribution step functions, we now propose a new family of
approximations. The next section presents the theoretical
development of a family of nonparametric, continuous, dif-
ferentiable sample distribution functions. Properties of
distribution functions are preserved and uniform conver-
gence is demonstrated. A smoothing routine is selected
which again preserves the distribution function properties.
Three specific nonparametric models are developed by a
detailed analysis of the stylized and random samples from
selected members of the Generalized Exponential Power dis-
tribution. Finally, three adaptive nonparametric models
were proposed based on using percentile ratios as a dis-

criminant.

Theoretical Development

Consider a random sample X Xn of size n from

1,...,
an unknown univariate, continuous, probability distribution

function F. Let X X be the ordered sample. Now
(L),...,7(n)

let Gi = G(X(i)), i=l,...,n, be the plotting position for

13
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the ith order statistic based on some sample distribution

function G.

Our goal is to estimate F by a nonparametric
approach while preserving the following properties of the
estimator, Fn:

1. Fo is differentiable

2. Fn is a distribution function

3. Fn(x(i)) = Gi’ i=1l,...,n

Linear interpolation will, of course, satisfy conditions
2 and 3, but we require differentiability at the data
points. What is needed is a family of nondecreasing

curves on [X(i)' X

(i+“] such that
lim_ Fé(x) = lim, F;(X) for each i=1l,...,n
x+xi x->Xi

Arbitrarily, set the derivative equal to zero at each data
point. ©Now, consider the midpoint of the interval

[X(i), x(i+l)]' Let

o (Kwasn) _ SitCin
n 2 2
Consider the function -acosy, which is monotoni-
cally increasing on the interval [0, 7] where a is a con-
stant. Making the transformation
( x~-X i
y = nlz—L4)
Xir1¥ (1)

14




G.+G

, x-X,.
F (x) = i i4l acos1T( (i) ) (3.1)

2 X

(i+1) "X (i)
Requiring Fn(x(i)) = Gi for each i=1,...,n gives

.- Gis17Gy
e E

Defining extrapolation points x(o) and X(n+1) such that
GO = 0 and Gn+l = 1 completes the derivation. Thus,

equation 3.1 becomes:

0 x<X

0
G. -G, x-X,.
F (x)= G. + —ii%——i (l—cosﬂ(x Ei) )) (3.2)
n 1 (i+1) ~%(4)

x(i)ix<x(i+l) i=0,...,n

>
1 x—xn+l

Differentiating, one immediately obtains an esti-

mate of the probability density function.

G., .-G, x~X,.
% (iiil—fir——> sinﬁ(x (i; ) (3.3)
(i+1) " (1) (i+1) “ (1)
fn(X) = .
x(i)iX<x(i+1)' i=0,...,n
0 elsewhere

Clearly, the derived Fn(x) satisfies the three
properties required. However, the utility of such an esti-

mate can certainly be questioned at this point.

15



Figures 3.1 and 3.2 show the estimates of the cumulative
and density functions respectively for a random sample
of size 20 from a normal distribution with zero mean and
unit variance. The plotting positions chosen were the
average of the mean and mode ranks. The extrapolation

points x(o) and X were chosen as:

X0y = 2@ "~ X2
The estimated CDF does approx-

{n+l)

and X = 2X

(n+1) (n) ~ ¥(n-1)-
imate the true CDF in a continuous fashion, but provides
the same inferences about the underlying population as

the plotting positions themselves. The estimated PDF plot
is analogous to a histogram with the intervals chosen to
contain only one data point. Some shape of the underlying
density can be inferred, especially with larger sample
sizes, but any inference concerning the density shape or
type is limited.

The basic undesirable property in the development
thus far has been the zero derivative of the estimated
cumulative distribution function at the data points. To
avoid these zero derivatives, consider applying a variation
of the jackknife. This technique was developed by
Quenouille (Refs 70,71) as a means of reducing the bias of
an estimator. In an abstract, Tukey proposes using the
technique for robust interval estimation (Ref 96). Aan

excellent survey and bibliography is given by Miller

(Ref 58). More recent applications and extensions of

16
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the jackknife may be found in Gray, et al., and Cressie
(Refs 15,28) .
Analogous to Quenouille's development, let

« X be an ordered sample. Choose k<n/2 to be

Xy )
the number of subsamples. Beginning at x(l) form the sub-
samples by assigning each successive order statistic to a
new subsample until the k+1 order statistic is reached.
Repeat this assignment process beginning with this order
statistic, using the same ordering of subsamples, until all
n order statistics are assigned.

Mathematically, if k is the number of subsamples,
then n=km+r where m=[n/k] and r=n modulo k. Now let R

index the subsamples, &=1,...,k and let y(j 2) be the jth
’

element of subsample 2. Thus,

Yi5,2) = ¥a+k(3-1))

where j=l,...,m if L>r

j=1,...,m+l if <x

Clearly, there will be k ordered subsamples, r of which
have size m+l and k~-r have size m.

Returning to the zero derivative problem, now that
the subsamples are generated, consider the following esti-~
mate of the cumulative distribution function. Form k
estimates, SFz(x), where SFz(x) = Fn*(x) for 4=1,...,k

and Fn*(X) is the continuous, differentiable, sample

19




distribution function defined in equation 3.2 and

(m if %>r

*=
SRS R £

The derivatives SFi(x) are zero at each

data point of the subsamples. Now simply average these

estimates to form the sample cumulative function,

=

1
SF(x) = = I SF,(x)
kogo1 *

and sample density function

1 k
sf(x) = SF (x) = i I SFi(x)

L=1

Note that each of the subsamples has its own

extrapolated points, Y(O,l) and Y(n*+l,£)’ Now let

X in = m;n {Y(O,l)}
and X ax = mix {Y(n*+l,£)}'

(3.4)

(3.5)

Thus, the cumulative and density functions in equations

3.4 and 3.5 are formally defined as:

0 X<Xmin
3 k
SF(x) = { lilSFQ(x) X inSxSX oo
1 x>xmax
1 k.
% ziISFl(x) xminSXixmax
sf(x) =

0 elsewhere

(3.6)

(3.7)




Two important results occur by this averaging.

First, while we required that F_(Y,. ) = G. for each
n " (3,%) 3
data point in the subsample, SF(Y(j 1)) is not necessarily
14
equal to the G(2+k(j-l)) for the entire sample. Thus, we
are no longer tied to restricting our estimates to the

plotting positions of the original sample. Second, while

each SFi(Y(j’lﬁ =0, SF'(Y(j’Q)) = 0 only if there are at
least k data points identically equal to Y(j,l)' Since

the assumed underlying distribution function is continuous,
the probability of such an event is zero. Of course, in
actual data sets, due to measurement accuracy, this event
may occur. However, since it would require k occurrences
in the same random sample to force a zero derivative, the
limitation does not appear to be unreasonable. Figures 3.3
and 3.4 show the effect of averaging on the normal sample
of size 20 considered previously. The number of subsamples,
k, was chosen as four. Both the distribution and density
functions are beginning to identify the shape of the under-

lying random variable.

Properties

Now that we have defined estimates for both the
cumulative distribution and density functions by equations
3.6 and 3.7, we need to examine their properties. Spe-

cifically, we will consider the distribution function

properties and uniform convergence.
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Let Rl be the real line, B the borel field on R1

and P, a probability measure defined on B. The function

AP+~

F defined on (RY, 8, F) by F(x) = P({teR': -»<t<x}) is the

distribution function of P. Any standard probability text

gives the properties of F (see references 13 and 49).
F satisfies the following three properties:

1. F is nondecreasing

2. F is continuous from the right

3. lim F(x) = 0 and lim F(x) =1

X+~ Xr®
The function SF(x) defined in equation 3.6 clearly satis-
fies these properties. Further, since each SFZ(x) is
differentiable for each xeRl, SF(x) 1is also differen-
tiable.
To examine the convergence of our estimator in
equation 3.6, we begin by examining the convergence of

step functions for subsamples.

Theorem 3.1. 1f S , is a sample distribution

function based on a subsample of the form

{ } §=1,...,n%, &=1,...,k<=,

Y(3,0)
where

Y5, = Fuek(3-1))

as defined in the previous section, and

= (™ if 2>r
T 'm+l if g<r

n*




then S « (X} converges uniformly to F(x) where
n

b
<
% 0 X Y(l,l)
H - = . * .= *
, Sn*(x) i/n Y(j,l)iX<Y(j+1,2) j=1l,...,n
! *2¥ (n*,2)

Proof. Without loss of generality, let F have a

finite support [a, b] in Rl.

- s - [ . R -
Let D = _:g§<LSn*(x) F(x)l-ln* T S, () F(x) |

where Sn(x) is the EDF.

v
Now D< _§g§<wlsn(x)-F(x)|+‘ <EH%ZJE> Sn(X)‘

By construction, n=km+r, i=2+k(j~1), r<k, and 2&<k<>.
For simplicity, consider the case n*=m (n*=m+l is similar

with slightly more algebra).

e m(2+k(j-1)) -3 (km+n) l
so, Di_:5§<mlsn(x) F(x)|+|< (AT Go1)) ) s, (x)
2 _k_x
- i i m
i_:gz(wlsn(x) F(x) |+ % T o % Sn(x)

r
lim D < 1im |D_+ sup fjd1—3—T]s (x)
n-+w n-o T _wcx< f +k - = n




F!"""""""""""""""""ll-""'lllIIll""""l"l"'l------—-—--|

Case i: x=a

n*» implies m+» , j+1, Sn(x)+0
Case ii: xe(a,b]
n+o implies mre , jo

Since 2<k<» and r<k<«, and since P[lim D_=0] =1 by
- n-+o n

Glivenko's Theorem (Ref 73:353), P[lim D =0] =1.

n-+-w

We now have established uniform convergence for
sample distribution functions based on our constructed
subsamples. Let us consider a general sample distribution
function defined on these subsamples. We will continue to

use n¥*=m.

Theorem 3.2. SFQ-(x) converges uniformly to F(x)

where
<
0 X Y(l,l)
SF, (x) = {(j+a)/(m+B) Yﬁ,l)5¥<y(j+1,£) j=1,...,m
1 XY (mel,2)
and -1<a<B<], Y(m+l,2) = Y(m,ﬂ) + 6
where §+0 as mo™
Proof.
0 . Sm(x) X<Y(l,l)
- - lJta . mg Y oo oo Sx<Y .
SF, (x) m+R S, (%) (3,%) (qtl,l)
—-— ]—l,.-.,m
1 Sm(x) xi»Y(m+l,SL)

26




L

g _a
m —
—_— S
(l +-§> m(X)
m

Again, if x is an interior point or an end point the second

(x) - F(x)]|

Now let D* = sup |SF
n —o x <™

<D+ sup
n —00 <X <™

term approaches zero as n+« . Thus, by Theorem 3.1

P[lim Dr;*= 0] =1
n-»co
A slight modification of the hypothesis of
Theorem 3.2 gives another family of estimators which con-
verge uniformly to F(x). The proof of the following

theorem is similar and thus omitted.

Theorem 3. 3. SF;(x)converges uniformly to F(x)

where
0 x<Y(0’£)
SF;TX)1= i%%%g Y(j,2)§x<Y(j+l,Q) j=0,1,...,m-1
! x2Y (m, 2)
and x<o<B<1l, ¥

0,2 - Ya,n" ¢

where §+0 as mro,
We now have, by the previous two theoicits, two
families of sequences of estimators which converge uni-

formly to the underlying probability distribution

27
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function F(x). Now consider SFQ(x) as derived in the pre-
vious section and define G, = SF, (Y. for j=0,1,...,m+l.
i L j,2)

Thus

+ .
G = SF, (Y(j,z)) for j=0,1,...,m

i+l
since  SE; (Y 5 4)) = SFi+(Y(j_lﬂ)).
We know by construction that

SFi-hd < SFy(x) < SFékud for every x.
This implies that

lim sup |SF (x) - F(x)]
n+o =L

< 1lim sup |SF(x)-F(x)|< lim sup | sF (x) -F (x) |
nre —olx<x n+o© —oyx<o

From Theorems 3.2 and 3.3, we can summarize with

the following theorem.

Theorem 3.4. SFQ(x) converges uniformly to F(x)

where
0 x<Y(0,2)
~Y,.
G., ,-G. 7T (5,0)
SF,(x) =) G, + “j+1 "3 ( - ( HL- ))
') 3j 5 l-cos Y(j+l,£) Y(j,g)
Yo Y ge,0
i=0,1,...,m
1 XY (1, 2)

28




and Gj = G(Y(j’g)), 3=0,1,...,m+l
where
0 X<Y(1,1)
G(x) = ((3+a)/ (m+B) Y(j,l)§X<Y(j+1,z) j=l,...,m
1 xiY(m’g)
for ~1<a<B<l

To prove our final result, we need a lemma.

Lemma 3.5. A finite convex combination of esti-
mators which converge uniformly to F(x) also converges

uniformly to F(x).

Proof. Let {Ti n(x)} i=l,...,k be a seguence
’

of estimators converging uniformly to F(x), i.e.,

P(lim sup [T, (x) - F(x)|=0) =1 for i=1,...,k

N+© =w0Yx<® i'n
and let k<=,
k
Now let Tn(x) = .E aiTi,n(x)
i=1
k
and Za, =1
j=1 *t
for O<a.<1
AL

lim sup |T _(x) - F(x)]
n+o ~—cwoyx<w n

29




k k
lim sup | Z o.T., (x) - £ a,F(x)]|
nte —w<x<eo j=) T+ oD i=1 *

k
< 1lim sup z a.‘Ti,n(x’ - F(x) |
n>© =wyx<o i=l 1
: | |
< I a, lim sup T, _(x) - F(x)
= =21 T phe —wexcw i,n

since k<o

Each term in the sum is zero by hypothesis. The uniform
convergence of the finite convex combination follows
immediately.

Applying the previous lemma to the function SF(x)

as defined in equation 3.6, we can state the following

theoremn.

Theorem 3.6. SF(x) as defined in equation 3.6,
converges uniformly to F(x).

At this point we have an estimator SF(x) of F(x)
which is itself a continuous, differentiable distribution
function and also converges uniformly. The same results,
however, are not available for the derivative, sf(x).
While it is true that sf(x) is continuous and differentia-
ble almost everywhere, convergence properties will have to

be inferred from the Monte Carlo analysis of Chapter 1IV.
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Smoothing

Although the estimator family has been defined
and the properties listed, a quick glance at Figures 3.3
and 3.4 indicates possible room for improvement. If we
could dampen some of the sinusoidal activity in both the
sanple cumulative and sample density functions, our esti-
mators should better approximate the underlying process.
Two methods of such a smoothing were initially investi-
gated: spline smoothing and a Fourier smoothing method.

Once SF{x) and sf(x) have been determined we can
generate their values at each daté point xi to form the
. At this

sets {SF(Xi)}i and {sf(xi)}i

=]l,...,n =1l,...,n

point, however, note that we are not restricted to the

original data set. We could choose a set {Z.}.

j"j=1,...,m
and its corresponding sets {SF(Z.)}._ and
i"7j=1,...,m
{sf(z.)}._ by an arbitrary rule, such as equally
3" j=1,...,m

spaced points in the domain or inversion of SF(x) at some
specified plotting positions. Thus m, the number of
points used in smoothing, can be as large (or small) as
we choose.

To apply spline smoothing (Ref 109) we can proceed
in two directions: (1) independently smooth both the dis-
tribution and density functions, or (2) smooth only the
distribution (density) function and analytically differen-

tiate (integrate) to get the density (distribution)
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function. Proceeding in/either of these directions opens
the possibility of negagive density values.

A second smoothing technique was hypothesized from
the density and cumulative estimation work of Kronmal and
Tarter (Refs 40,48). Their investigation yielded estimates
with impressive mean integrated sguare errors (MISEs).
Analogous to the spline methods, we could use the Fourier
approximation method of Kronmal and Tarter independently for
the distr;bgtion and density functions or separately and
derive the othér. The same drawback occurs using the
Fourier expansion as with splines--negative density values.
Since our initial goal in this development was to preserve
the distribution function properties of our estimators as
well as add differentiability, it would be foolish at this
point to abandon this aim in favor of the possible smooth-
ing advantages of spline or Fourier expansions. Thus, both
spline smoothing and the use of Fourier expansions were
discarded.

The availability of both distribution and density
function estimates at arbitrary points in the domain sug-
gested an alternative approach. 1In a 1979 article, Efron
{Ref 23) developed a "bootstrap method" related to the
"double Monte Carlo" method proposed by Moore (Ref 59).
Both methods estimate the distribution function based on
sample data and then create a pseudosample by sampling

from this estimated distribution. Rather than sampling
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from the estimated distribution, as these authors suggest,
consider inverting the estimated distribution at specific
points according to some rule. Specifically, solve

SF(2

are pre-

}

= G. for Z(j)l where {Gj} j=ll---lm

(j)) J
determined plotting positions. The set {Z(j)

is now a pseudosample based on some regular divisions, the

ji=l,...,m

plotting positions Gj' of SF(x). Having generated this
pseudosample, now apply equations 3.6 and 3.7 to form new
estimates of the distribution and density functions. Of
course, this inversion process could be repeated and other
estimates formed on the basis of new pseudosamples.

The previous derivation clearly preserves the dis-
tribution function properties of the estimators, as well

as differentiability and continuity. By inverting SF(x)

at the plotting positions Gj' we also preserve ordering

and spacing information contained in the original sample,
in contrast to the random sampling procedures of Moore
and Efr "n. Although no formal proof of uniform conver-
gence of this smooth distribution function estimator is
presented, empirical evidence from graphical and Monte
Carlo analysis of this estimator strongly suggests that
uniform convergence is preserved. We will postpone a
detailed analysis of these estimators to the results of
Monte Carlo analyses of the next chapter.

Figures 3.5 through 3.9 give a graphical display

of the smoothing technique proposed for our random sample
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of size 20 from the normal distribution. Figures 3.5 and

3.6 show the smoothed approximation and the true underly-
ing standard normal distribution. Figures 3.7 and 3.8
compare the smoothed approximation to a normal distribu-
tion whose parameters are minimum variance unbiased esti-
mates. Note the performance of the nonparametric model
without the assumption of normality. Figure 3.9 compares
the smoothed approximation to the empirical cumulative
distribution function. Choices for the plotting positions,
inversion points, and other variables have been made using
methods discussed in the next section.

Choice of Variables for
the Estimators

Since the approximation method and smoothing tech-
nique have been defined, we now seek to identify the vari-
ables needed to form our final estimators. The investiga-
tion will examine five sets of variables: (1) the number
of subsamples for a given sample size; (2) plotting

positions, {Gj} for each subsample; (3) extrapo-

j=1,...,n*
lation values, Y(O) and Y(n*+l) for each subsample;

(4) inversion points for the smoothing routine to generate
the pseudosample; and (5) the number of inversions.
Judicious choices of these sets of variables should give
us an estimator with good approximating properties.

Due to the array of possible choices of the vari-

ables and their complex interaction in the estimators, it
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was necessary to restrict each set of variables to a manage-

able set of choices. We will rely on numerical and Monte

Carlo analysis to determine the choices for our variables.
No claim of optimality will be made, but we will attempt to
justify our variable selections as reasonable for the
situations considered. First, let us examine each set of

variables and its restricted domain.

Number of Subsamples. Given an ordered sample of

size n, let k be the number of subsamples generated via

the method outlined earlier in this chapter. We require
that k<n/2, for each subsample to contain at least two
points, and also that k remains finite as n approaches
infinity to satisfy the uniform convergence of the
unsmoothed estimator of equation 3.6. For samples of size
100, k was initially chosen as an element of {5, 10, 15, 20}.
Subsequent choices of the domain of k were made and will

be identified at appropriate steps in the analysis.

Plotting Positions. Given each ordered subsample

of size n*, a plotting position Gj' j=1,...,n*, is assigned
to each order statistic. The following plotting positions

were chosen from Table II.l:

1. Mean ranks
2. Median ranks
3. Midpoint of the jumps of the empirical dis-

tribution function
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4. Average of the mean and mode ranks

5. Any of the above four plotting positions based
on the entire sample, rather than each subsample. For
example, each Y(£ 3) has plotting position Gi’ i=1l,...,n

!
associated with it where Y(l,j) = x(£+k(j-1)) = X(i)'
the ith order statistic of the entire sample.

Extrapolation Values. For each subsample define

Y - A(Y )) and Y + A(Y

(0 =~ Y(1) (2) 7Y (1 (n*+1) = Y(n*) (n*)
Y(n*—l)) where A is the extrapolation value. The choices
of A that were considered are:

1. 0, which puts a finite probability at each

extreme order statistic of each subsample

2. 0.5
3. 1.0
4. 1.5

5. Choose A equal to the ratio Gl/(GZ-Gl)' This
choice extrapolates the data points proportionately to
their plotting positions. Since the plotting positions
listed previously are symmetric, 4 is also egual to
(1-G,») /(G =G ._,) - Note that if plotting position 5 is
used, then the extrapolation points are calculated only
once based on the entire sample and then remain constant ;

for each subsample.

Inversion Points. Once the subsamples are defined,

we need a rule for inverting equation 3.6 to create a 1
|
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pseudosample. Our choices for inversion points are the
first four plotting positions listed previously based on
the entire sample. Thus the pseudosample {Z.,} ._
i’ i=1,...,N
is defined by Zi=SF-1(Gi) where Gi is one of the four
plotting conventions based on a sample of size N. Numeri-

cal calculations of SF-l(Gi) were accomplished via a

Newton-Raphson method. Adjustments to the extreme points

of the pseudosample were sometimes necessary. See Appen-

dix 6 for a further discussion.

Number of Inversions. Since the inversion process

can be repeated by creating another pseudosample, the
number of repetitions needs to be determined. Due to the
computational effort required and some preliminary investi-
gation of repeated smoothing, a maximum of two inversions
was considered practical. Estimators smoothed more than
twice improved very little, if at all. Thus the number

of inversions, I, was constrained to the set {0, 1, 2}.

Now that we have restricted our variables to man-
ageable sets, let us now describe the procedure for select-
ing specific distribution function estimators by identify-~
ing particular choices of our variances. OQur goal is to
provide reasonable values for these variables in a limited
situation in the hope of robustness over a wider class.

To that end, let us consider only sample size 100 for the

present. We also need a criterion for choice of the

42




variables. A widely accepted criterion is mean integrated
square érror (MISE) (Refs 40, 48, 103, 104, 105) . MISE =

E {: [f(x)-%(x)]zw(x) (dx) , where f is the true function,

£ is the estimator, and w is the weight function. The
integrated square error can be approximated numerically
since our estimators are continuous. As a criterion, we
will use an approximation to the integrated square error
for both the distribution and density functions. For com-
parison purposes, other criteria were also used. These
included Kolmogorov-Smirnov (K-S) distance, K-S integral
and modified K-S integral distances, Cramer von Mises (CVM)
and modified CVM integrals, Anderson-Darling (AD) and modi-
fied AD integrals and average square error (ASE). For a
discussion of these criteria, see Appendix 1.

To numerically evaluate the variable choices, we
also need to know the true underlying distribution. We
chose three members of the Generalized Exponential Power
Distribution family as our test distributions (see Appen-
dix 2). The members chosen were the double exponential,
normal, and uniform distributions. Although restricting
ourselves to a symmetric family, the three members selected
give three distinct measures of tail length, ranging from
leptokurtic to mesckurtic to platykurtic. The density
functions also possess unique central shapes--the double
exponential being concave, the normal convex, and the

uniform linear. As such, it was conjectured that
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estimators which performed well over this limited set of
distributions would perform well over a much wider class.
The variable selection procedure, itself, consisted
of two main steps: examination of "stylized" samples and
examination of random samples. We shall deal with each in

turn.

Stylized Samples. Given a sample size of 100, we

generated a "stylized" sample by inverting each test dis-
tribution at the inversion points. We repeated the process
for all four possible inversion values. Next, we calcu-
lated values for all of the distance criteria for the 400
combinations of the number of subsamples, plotting posi-
tions, extrapolation values and inversion points. The
rationale at this stage is related to the underlying
philosophy of Fisher consistency (Ref 73:281). Strict
Fisher consistency requires that an estimator yield the
true parameter when true proportions are realized in the
sample. For our purposes, we require an estimator to be
reasonably close to the true value when the input sample
is stylized. Table II1I.l1 summarizes the results of the
stylized sample analysis. Four sets of variables were
chosen for future consideration because of their "good"
performance with respect to the modified CVM integral
criterion. All three sets of variables which minimized

the modified CVM integral for the distribution function
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TABLE III.1l

VARIABLE SETS BASED ON MODIFIED CVM INTEGRAL VALUES
FOR THE DISTRIBUTION FUNCTION

Distribution
(1) Double
Variables Exponential Normal Uniform
(5,3,3,2) 6.83x10" ' 3.78x107 7 1.78x10”°
(5,4,3,2) 3.28x10°7¢2) 4 .10x1077 3.39x107°
(5,5,3,2) 6.91x10" ' 4.43x10°6 1.13x1072(2)
(5,4,5,3) 1.32x10°8 3.51x10"7(2) 4.62x10 '

All entries listed are values of the modified
Cramer von Mises integral of the distribution function.

Note 1l: Variable sets are indexed based on their i
domains given earlier in this chapter. Terms correspond i
to (number of subsamples, plotting position, extrapolation
value, inversion points).

Note 2: Minimum modified CVM integral value for
that distribution.

were selected. The other set selected performed well for

both <the normal and double exponential distributions.

In examining the results of the stylized sample
analysis, four observations were made. First, inversion
points based on the median ranks outperformed the other
choices. Second, plotting position 5 was clearly superior
when the underlying distribution was uniform. This observa-

tion confirmed our intuition since all of the information

in a sample from the uniform distribution is contained in
the two extreme order statistics. Plotting position 5 uses

an extrapolation scheme based on the entire sample and thus q
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estimates the bounds of the distribution better than using

extrapolated points based on the subsamples. Third, over-
all, the extrapolation values appeared arbitrary. Fourth,
the number of subsamples determined in the "best" sets of
variables seems low, probably due to the ideal spacings
generated by the stylized samples. Based on these observa-
tions, we decided to fix the plotting positions, extrapola-
tion values, and inversion points as determined by the

four best variable sets. For these combinations, we now
want to evaluate the functions on a limited number of

random samples.

Random Samples. Given a fixed set of four combina-

tions of plotting positions, extrapolation values, and
inversion values as determined from the stylized samples,
we now propose to determine choices for the number of sub-

samples and the number of inversions. Twenty-five random

samples of size 100 from each of the test distributions
were drawn and evaluated via averaged modified CVM inte-
grals for both the distribution and density functions.
Table III.2 lists the optimal choices of the sets of vari-
ables with respect to the CVM criteria. Based on the
results of the random sample analysis, four conclusions
were drawn: (1) there is no clear-cut optimal choice of

variables across all three test distributions; (2) the

optimal choice for the uniform performs poorly for the




TABLE III.2

OPTIMAL CHOICES FROM RANDOM SAMPLES

Modified CVM Integral Values
Distribution Function Density Function

Variables(l)

1. Double Exponential

~4 (2 -
A. (5,4,5,3,0) 7.56x10~4 (2 3.19x1072
B. (15,4,3,2,2) 7.80x10~2 1.52x1073(2)
2. Normal
A, (25,4,3,2,1) 1.27x1073 1.12x1073(2)
B. (25,4,3,2,2) 1.17x10~3(2 1.31x1073

3. Uniform

(25,5,3,2,2) 5.00x10~% (2)

1.22x1073(2)

Note 1: Variables are listed in the same order as
in Table III.l with the last variable added being the
number of inversions.

Note 2: Denotes minimum value for that criterion
and distribution.




other two distributions; (3) plotting position 4, the

average of the mean and mode ranks, outperformed plotting
position 3, the midpoint of the jumps of the empirical dis-
tribution function, in every case; and (4) the inversion
values at the median ranks outperformed the others in most
cases. From these observations, we decided on forming
three different models using the optimum, or nearly opti-
mum, choices for each test distribution. Table III.3
summarizes the three models. Model 1 was developed from
nearly optimum choices based on the double exponential dis-
tribution, Model 2 from the normal distribution, and Model 3
from the uniform distribution. These models were derived
solely for sample size 100. Other random sample sizes
were then investigated. Given random samples of size 20, 50,
175, and 250, we fixed all of the model parameters except
for the number of subsamples. We also introduced a sixth
pair of variables, N, the number of points to invert, and
K, the number of subsamples used after an inversion. Based
on twenty-five random samples from each sample size and
using the modified CVM integral criterion, we developed
nearly optimal selections of the number of subsamples, k,
as well as N and K. Table III.4 gives the relationships
between sample size and the number of subsamples for the
three models based on their corresponding GEP distribution.
These selections were denoted nearly optimal for two

reasons. First, only a very few cases had N, the number of

48




TABLE IIX.3

NONPARAMETRIC MODELS 1, 2, AND 3

Model 1

Number of subsamples
Plotting positions
Extrapolation value
Inversion points

Number of inversions

Model 2

Number of subsamples
Plotting positions
Extrapolation value
Inversion points
Number of inversions

Model 3

Number of subsamples
Plotting positions
Extrapolation value
Inversion points
Number of inversions

-- 15

-- average of mean and mode ranks
-- 1.0

-- median ranks

-- 2

~- 25

~- average of mean and mode ranks
-~ 1.0

-~ median ranks

-1

-~ 33

-~ median ranks of the entire sample
-- 1.0

-- median ranks

-- 2

All models are

valid for sample size 100 only.




TABLE III.4

NUMBER OF SUBSAMPLES VERSUS SAMPLE SIZE

Number of
Sample Number of Inversion Number of
Size Subsamples Points Subsamples
Model (n) (k) (N) {K)
1 20 5 20 5
50 10 50 10
100 15 100 15
175 30 100 15
250 45 100 15
2 20 10 20 10
50 25 50 25
100 25 100 25
175 35 100 25
250 50 100 25
3 20 10 20 10
50 25 50 25
100 33 100 33
175 80 100 33

250 125 100 33




inversion points, greater than 100 as the optimal choice.
The difference in the CVM criteria for the optimal choice
and the value listed in Table III1.4 was insignificant.
For example, for sample size 50 using Model 3, the range
of values for the modified CVM integral was [.00088,
.00190] for the distribution function and [.00189, .00760]
for the density function. The actual values chosen
correspond to .00088 and .00190 for the distribution and
density functions respectively. Thus, the decrease in the
criteria did not justify the added computational effort
to invert more than 100 points. The number of points in

each pseudosample, N, was defined using the following

algorithm:
20 n<20
N = n 20<n<100
100 n>100

The number of subsamples for the pseudosample, K, was
defined to be the corresponding k for n=N. Second, due
to the high variability of such a small Monte Carlo sample
size, we again opted for reasonable values which followed
a generally regular trend.

The number of subsamples for sample sizes not
listed in Table 1II.4 was arbitrarily determined by con-
structing step functions for each model such that the

average number of points in each subsample followed a near
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linear interpolation through the k versus n points listed
in the table. For sample sizes greater than 250, we use

the value of k for n=250. This choice allows the models

to exhibit the uniform convergence property shown earlier
in this chapter since the number of subsamples stays finite.
Figures 3.10, 3.11, and 3.12 show the plots of k versus n
for the three models. Figure 3.13 shows the k-n relation-
ship for model 2* developed in conjunction with an adap-
tive procedure discussed in the next section. Table III.5
shows the relationship of the average number of points in

each subsample to the sample size for the three models.

Adaptive Approaches

Each of the three models generated in the previous
section was based on stylized and random samples from a
specific distribution. The variables for Models 1, 2, and
3 were chosen by comparison with the double exponential,
normal, and uniform distributions respectively. While the
models are strictly nonparametric and perform well given a
specific underlying distribution, their performance for an
unknown distribution is yet undetermined.

Since the three members of the GEP distribution
represent vast differences in shapes and tail length, and

since each nonparametric model proposed has been associ-

ated with a specific member of the GEP family, it became

a natural extension to consider a nonparametric adaptive

model using the three models already developed.

52




T TSPOW--30Td U SA ) *Q[°€ 2Inbrg

N

oo.oou L axmpovu . oo_WoN . S.Oow R 8-0&- R ooFoo . 8-0' . 00 Js.o

53

NSA N
1 7300M [




Z TPPOR--30Td U sA )

"11°€ @anbta

N
00°0923 00°0v3 00°003 00°091 00°031 00°08 00°0F 00°0

L A [l AP | P 1 A | . 1 A 1 . 00°0
‘02
“ov
*08
“08

N 8aA M

3 3004

54




£ T9POW--30Td U SA ¥

*Z1°€ 2anbtra

00°093

A

a0 0¥3
A

N

N 8a
¢ a00u

00 °031

55




¥ TSPOW--30Td U SA ¥ °"€1°€ aInbTd

N
00-081 opjo31  00)0R 00O  00°0

A

. 8
a o

v Trﬁwé-—fa NP V"é‘l""_"“’_f' -
]
(-]
v

0008

éw—.fr, ———
.

N SA M
%3 3008

QVf'f N
L3
-

56




TABLE III.5

SELECTED VALUES OF k AND n FOR THE NONPARAMETRIC MODELS

Sample
Size Model 1 Model 2 Model 3 Model 2*
(n) k n/k k n/k k n/k k n/k
5 2 2.5 2 2.5 2 2.5 2 2.5
10 3 3.33 5 2.0 5 2,0 2 5.0
15 3 5.0 7 2.14 7 2.14 3 5.0
20 5 4.0 10 2.0 10 2.0 4 5.0
25 5 5.0 12 2.08 12 2.08 5 5.0
50 10 5.0 25 2.0 25 2.0 10 5.0
75 15 5.0 25 3.0 33 2.27 15 5.0
100 15 6.67 25 4.0 33 3.33 20 5.0
150 25 6.0 30 5.0 50 3.0 30 5.0
200 35 5.71 40 5.0 100 2.0 40 5.0
250 45 5.56 50 5.0 125 2.0 50 5.0

57




To develop such a model, we need a discriminant.

In the case of symmetric distributions, three discrimin-
ants based on tail length have been used: kurtosis, Hogg's
Q statistic, and percentile ratios. Applications of the
discriminants in parametric estimation problem can be

found in Andrews, et al., Daniels, Harter, et al., Hogg,
McNeese, and Moore, to name only a few (Refs 5, 17, 34, 38,
55, 60). For our purposes, we do not wish to restrict our-
selves to modeling only symmetric populations. Both
kurtosis and Hogg's Q statistic are not compatible with the
asymmetric case. They tend to average the measures of both
upper and lower tail length. However, it is possible to
use percentile ratios as a discriminant for each tail
individually. Thus, we can, heuristically at least,
envision a model which could adequately portray a lepto-

kurtic tail on one end and a platykurtic tail on the other.

Percentile Ratios. Let F be a continuous distribu-

tion function. Now define the lower and upper percentile

ratios, PL and PU as follows:

pr = F2(.5) = F71(.025)
= =)
Fl(.5 - F (.25
-1 -1
oy = F2(.975) = FT1(.5)

F1(.975) - F1(.75)

58
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By construction PL and PU are greater than or equal to
unity. Table III.6 lists the lower and upper percentile

ratios for some common distributions.

The next step was to examine the distributions
of the percentile ratios themselves. We approximated these
distributions by our nonparametric models. Monte Carlo
samples of size 20, 50, 100, 175, 250, and 500 were drawn
from each of the three GEP test distributions. The lower
percentile ratio was then calculated. The process was
repeated 100 times to get 100 values of PL for each sample ;
size and test distribution. This is equivalent to 100
values of PU since the random samples were drawn from
symmetric populations. We then used our nonparametric

models to generate approximate distribution functions for

PL (or PU) at each test distribution and sample size.
Model 1 was used for the distribution of the percentile
ratios computed from uniform and double exponential random

samples. Model 2 was used for the distribution computed

from normal random samples. Selection of these models was

based on both graphical characteristics and the sample

percentile ratios. At this point we imposed two constraints.

First, since Model 3 tended to perform poorly if the true ‘
distribution was not uniform, we shall only use Model 3

when the sample strongly suggests a shape resembling the

uniform. Let SPR be the sample percentile ratio, either

and PR, be the values of the

lower or upper, and let PR1 2
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‘ TABLE III.6

POPULATION PERCENTILE RATIOS

Percentile Ratios

Distribution Lower Upper
Normal 2.904 2.904
Uniform 1.900 1.900
Double Exponential 4.322 4.322
Triangular 2.651 2.651
Cauchy 12.706 12.706
Exponential 1.647 4.322
Weibull (2) 2.274 3.155
Weibull (3) 2.630 ' 2.870
Beta (1, 2) 1.764 2.651
Beta (%, %) 1.409 1.409
Largest Extreme Value 2.410 3.764

Shape parameters are given in parentheses. Tri-
angular distribution has support [~2,2] Beta distribution
has support [0,1]. All other distributions have been
standardized with location parameter zero and scale .
parameter one.
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percentile ratio where the adaptive procedure switches
models. We set P(SPR < PRll uniform distribution) = .5.
Second, since both Models 1 and 2 perform reasonably well
for both the double exponential and the normal distribu-
tions, set P(SPR < PRZI double exponential distribution) =
P(SPR > PR2| normal distribution). Thus, we equate the
probabilities of an incorrect choice. Based on these two
constraints and our nonparametric distribution functions,
we solved for PRl and PR2 across all sample sizes con-
sidered. Values derived were PR1=1.9 and PR2=3.5.

Table II1I.7 lists the approximate probabilities for the
sample )..w.~ percentile ratio falling in any of the three
intervals defined by PRl and PR2 for the three underlying
distributions and various sample sizes.

The construction of our nonparametric estimators
allows the use of only one model for each sample con-
sidered. Having two different percentile ratios creates
an ambiguity as to which model to finally choose. We
resolved this dichotomy in two ways. First, Model 1
seemed to perform better when the underlying population was
normal than Model 2 performed if the underlying population
was double exponential. So, we chose Model 1 if both
Models 1 and 2 are indicated. Actually, it turns out that
the model number is its relative order of precedence.

Second, we discovered that the uniform distribution could

also be approximated well by using either Models 1 or 2 and
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TABLE III.7

SELECTED PROBABILITIES--LOWER PERCENTILE RATIO (PL)

Sample UNIFORM DISTRIBUTION
Size P(PL<1.9) P(1.9<PI<3.5) P(PL>3.5)
20 .4326 .5025 .0649
50 .5178 .4738 .0084
100 .5541 .4428 .0031
175 .5085 .4915 0
250 . 5544 .4456 0
500 .4881 .5119 0
Sample NORMAL DISTRIBUTION
Size P(PL<1.9) P(1.9<PL<3.5) P(PL>3.5)
20 .0994 .5711 .3295
50 .0354 .7273 .2373
100 .0350 .7992 .1658
175 .0080 .8753 .1167
250 .0068 .9295 .0637
500 0 .9658 .0342
Sample DOUBLE EXPONENTIAL DISTRIBUTION
Size P(PL<1.9) P(1.9<PL<3.5) P(PL>3.5)
20 .0592 .2715 .6693
50 .0231 .1851 .7918
100 .0026 .1594 .8380
175 .0012 .1222 .8766
250 .0013 .0972 .9015
500 0 .0375 .9625
62




forcing the extrapolated points for each subsample to be
constants. These points are based on extrapolation from
the entire sample.

From the previous three models and the fixed
extrapolation point modification, Models 4 and 5 were
developed. Model 4 uses the first three models depending
on the values of the sample percentile ratios. Model 5
uses only Models 1 and 3.

In analyzing the relationship of k, the number of
subsamples, and n, the sample size, it was evident from a
graphical standpoint that the ratio of k/n determined how
much detail the approximation possessed. So a choice of
a nominal ratio of k/n seemed appealing. Since Models 1
and 2 performed reasonably well for double exponential and
normal random samples, we postulated another model which
is a compromise between the two in the sense of the k/n

ratio. We chose the simple expression:

n+4
5

50 n>250

n<250

Thus, for samples of size 250 or less, each subsample con-
tains either 4 or 5 data points. Like Model 2, we kept
the number of inversions at one. Denote this new model
as Model 2* since, with the exception of the new choice

of k, it uses the same variables as Model 2. An adaptive
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procedure, Model 6, was based on Models 2* and 3. A sum-

mary of all three adaptive models is given in Table III.8.

Summary

This chapter has traced the derivation of a non-
parametric, continuous, differentiable, sample distribu-
tion function. First, we considered a simple scheme to
extend plotting positions to a continuous, differentiable
function. Then, we improved on our distribution and den-
sity estimators by the use of averaging functions based on
subsamples, similar to the jackknife. Next we investi-
gated the properties of uniform convergence and of distri-
bution functions as they apply to our new estimators.
Theorem 3.6 concludes the uniform convergence arguments.

A smoothing routine, which again preserves the distribu-
tion function properties, was introduced. Next, a detailed
analysis of stylized and random samples from representative
members of the Generalized Exponential Power distribution
resulted in selection of three initial nonparametric
models. With the addition of the percentile ratios as
discriminants of tail length, three adaptive models were
then defined. Having completed the theoretical develop-
ment of our six chosen models, our next goal is an evalua-

tion and comparison of these techniques as estimators.
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TABLE III.S8

DECISION RULES FOR ADAPTIVE MODELS

Percentile Ratios

Lower Upper Model 4
[1.0,1.9) [1.0,1.9) Model 3
[1.0,1.9) [1.9,3.5] Model 2-~fixed X(O)
[1.0,1.9) (3,5,=) Model l--~-fixed X(O)
{1.9,3.5] [1.0,1.9) Model 2-~-fixed X(n+1)
[1.9,3.5] [1.9,3.5] Model 2
[1.9,3.5] (3.5,x) Model 1
(3.5,«) f1.0,1.9) Model 1--fixed X(n+l)
(3.5,«) [1.9,3.5] Mogdel 1
(3.5,=) (3.5,«) Model 1

Percentile Ratios
Lower Upper Model 5
[(1.0,1.9) (1.0,1.9) Model 3
[1.0,1.9) [1.9,x) Model 1--fixed X(O)
(1.9,x) {1.0,1.9) Model 1-~-fixed X(n+1)
(1.9,) (1.9,x) Model 1

Percentile Ratios
Lower Upper Model 6
{1.0,1.9) [1.0,1.9) Model 3
(1.0,1.9) [1.9,x) Model 2*--fixed X(O)
(1.9, ) {1.0,1.9) Model 2*~--fixed X(n+l)
(1.9,x) (1.9,x) Model 2*
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IV. Distribution and Density Function Estimation

Introduction

Having constructed six nonparametric models, we
now propose to evaluate their performance and demonstrate
their feasibility. We begin by surveying several other
authors' estimates of the distribution function, both con-~
tinuous estimates and step functions. Estimates of the
density function are then examined. These include kernel
estimates, orthogonal series estimates, delta sequences and
a more recent entropy based estimate. The new nonparametric
estimators are then compared on the basis of mean integrated
square error of both density and distribution functions.
Tables are given which list the results of Monte Carlo
comparisons of the models over six distributions and six
sample sizes. The results were compared with two other
continuous density approximations. Convergence rates fo.
the estimators are also approximated. Next some specific
examples of the models are shown plotted for five differ-
ent distributions. Finally the hazard function is esti-
mated and plotted. As a tool, the hazard function, coupled
with the density and distribution functions form a power-

ful discriminant of density types.
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Historical Survey

Distribution Function Estimation. We have already

examined some estimates of distribution functions in our
discussion of sample distribution functions in Chapter I1I.
Some were rather general, like Vogt's variant of the
empirical distribution function, while others, like
Schuster's, were concerned with reflecting points about
the estimated location parameter of a symmetric distribu-
tion. The references in Chapter II describe rather simple
step function approaches to estimating the distribution
function.

Several other methods also merit discussion. While
his estimate is still a step function, Turnbull deveioped
an algorithm to calculate the maximum likelihoocd estimate
F of an underlying distribution function F. He shows
monotonic convergence of his algorithm to F and indicates
an application to hypothesis testing, while considering
data sets which are arbitrarily grouped, censored or trun-
cated (Ref 97). For an average squared error loss func-
tion, Phadia showed that a step function estimator f(t)
is minimax.

1,1
T 2(mtl) m{m+l)

~ n
F(t) E Gx_(—w,t)

i=1 i

where m = v/n and 6X is a measure on R1 which assigns a
i
unit mass to Xi' He further derived step function estimators
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which are best invariant and also best invariant confidence
bands (Ref 67).

Continuous functions have also been developed.
Smaga derives a smooth empirical distribution function in
a manner similar to kernel estimates for a probability
density (Ref 86). Orthogonal series estimators, based on
trigonometric functions proposed by Kronmal and Tarter
give a continuous approximation for the distribution func-
tion. Their Fourier series method produced impressive
mean integrated square error values. A significant draw-
back to the method is the lack of distribution function
properties of these estimators (Refs 40, 48).

While we are primarily concerned with nonpara-
metric estimation, some rather general three or four
parameter families of distributions can be used to approxi-
mate a distribution function. Recently, one such four
parameter family was introduced by Ramberg, et al. Based
on a generalization of Tukey's lambda function, this new
distribution approximates a wide range of both symmetric
and asymmetric populations (Ref 72).

In addition to the estimating methods presented
both in this chapter and in Chapter II, the approaches to
density estimation given in the next section provide the
opportunity for further distribution function estimation.
As we have seen, some authors attack the general problem

of data modeling by investigating the distribution function.
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We now consider those who chose a path of density function

estimation.

Density Function Estimation. Oldest among the

density function estimates is the histogram. Given a set

of class intervals, the histogram is a maximum likelihood
estimatcr. This dependence on internal selection, however,
is a serious drawback. While the method of maximum likeli-~
hood has been a classical technique, recently the minimum
distance method developed by Wolfowitz has inspired numer-

ous articles, particularly in the sense of parametric

estimation (Ref 108). Reiss proposes minimum distance
estimators of unimodal densities. He proves consistency
and gives a computational algorithm. Using the empirical
distribution function and the Kolmogorov-Smirnov distance
measures, Reiss' estimators are defined as constants
between ordered sample data points. As such, the esti-
mators are actually minimum distance histograms (Ref 74).
Since 1956, some significant continuous approxi-
mations have emerged. Much of the literature has been
devoted to kernel estimators, first developed by Rosenblatt
(Ref 75). Most of the important results are summarized in
a recent book by Tapia and Thompson (Ref 94). Wegman and
Davies discuss two recursive estimators closely related to
kernel estimators. They also propose a sequential estima-

tion procedure based on the recursive estimators (Ref106).
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Singh evaluates the mean square errors of a density esti-

mator of the kernel type and its derivatives (Ref 85).

Some further properties of kernel estimators are proposed
by Schuster (Ref 81). Fourier inversion method of density
estimation is proposed by Blum and Susarla. They show this
estimator possesses mean square consistency and asymptotic
normality (Ref 8).

Various estimation techniques based on orthogonal
series expansions have also been developed. Kronmal and
Tarter proposed estimators of both distribution and density
functions using Fourier series. Expressions for the mean
integrated square error are developed in terms of the vari-
ances of the Fourier coefficients. Both Schwartz and
Walter evaluate the properties of a density estimator based
on Hermite functions which are defined in terms of Hermite
polynomials (Refs 84, 100). Watson proposes another ortho-
gonal series estimator (Ref 102). Crain uses the set of
normalized Legendre polynomials on [-1,1] as his orthogonal
set. He incorporates both a restricted maximum likelihood
approach and the information~theoretic distance defined by

Kullback (Ref 14).

Watson and Ledbetter defined a density estimator
as an average of square integrable functions. Expressions
for these functions are derived based on a mean integrated
square error criterion (Ref 103). Walter and Blum general-

ized many of the previously mentioned methods into one

method based on "delta sequences," sequences of functions
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which converge to a generalized function &. This delta

sequence method includes kernel estimators, orthogonal
series estimators, Fourier transform estimators and histo-
grams (Ref 101) . Convergence rates are also generalized
from the results of Wahba (Ref 99).

Parzen has attempted to incorporate both para-
metric and nonparametric schemes in an approach to data
modeling. He also introduces density quantile functions
and a method of autoregressive density estimation (Ref 65).

Entropy approaches have also been suggested to
estimate probability densities. MacQueen and Marschak
discuss the rationale for using a maximum entropy approach
to estimate Bayesian prior distributions (Ref 52). Miller,
using the maximum entropy formalism given by Tribus
(Ref 95), approximates a density function as a member of
the exponential family of distributions, F. Miller's
approximations are shown to be within computational accu-
racy when the underlying distribution is a member of F and
accurate average values of the "information functions" are

available (Ref 57).

Estimator Comparisons

Having examined previous distribution and density
function estimators, we now wish to evaluate the new non-

parametric estimators proposed in Chapter III1. We begin

by examining the criteria for comparison. Next we discuss




et

the mechanics of the Monte Carlo study. Finally, we shall

present the results and conclusions of the comparisons.

Criteria. To derive the various variables which
make up our models, we previously used a modified CVM
integral criterion. Here we will use this same criterion
to evaluate the estimators. As mentioned in Appendix 1,
this modified Cramer von Mises integral approximates the
average sguare error and mean integrated square error
(MISE) with weight function f.

If we restrict ourselves to the family of con-
tinuous distribution functions, F, which can be parameter-
ized by location and scale parameters, we can show by con-
struction that SF(x) belongs to F. Further, with respect
to the distribution functions as the arguments, the modi-
fied KS integral, modified CVM integral and modified
Anderson-Darling (AD) integral are all location and scale
invariant. When the density functions are used in the argu-
ments of these integrals, location invariance is preserved,
but scale invariance is not. For example, let X be a
random variable from a standard normal distribution. Now
let ¥ = X/o. Choose a random sample {Xi} i=1,...,n and
form {Yi} i=l,...,n. Now let SF (x) and sf (x) be the
nonparametric approximations based on the sample {Xi}

i=1,...,n, and similarly for Y. Then

SEy) -sE,(y)) 2 aSF (y) = o S(£, (x)-sE, (x)) 2dSF, (x) .
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Given the modified CVM integral value for a standardized

distribution, we can compute the integral for another
random variable with a different scale factor but the same

distribution type.

Monte Car.o Mechanics. Withour criteria defined

we now generated random samples via the methods discussed
in Appendix 3. Twenty-five samples of sizes 20, 50, 100,
175, 250 and 500 were drawn from each underlying distribu-
tion. These distributions included the double exponential,
normal, uniform, triangular, Cauchy, and exponential. To
keep a consistent comparison with other published results,
the uniform and triangular distributions were defined on
[0,1}. Aall other distribution functions had a zero loca-
tion parameter and unit scale parameter. Each random
sample was compared with nonparametric models 1 through 6.
Values for both the MISE of the distribution function and
density function were approximated by averaging the twenty-
five modified CVM integrals. A standard error of each
estimate was also calrulated. As a numerical check, the
average square errors were also calculated and were in

close agreement with the modified CVM criterion.

Results. Tables IV.l1l through 1IV.8 summarize the
main results of the Monte Carlo study. Although a small
Monte Carlo sample size was used, relative comparisons

among the nonparametric models developed here can be made.
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The same random samples were used to calculate the modi-
fied CVM integrals for each model. Tables which give
approximate MISE also include the standard error of the
estimate beneath each entry to give a measure of the Monte
Carlo accuracy.

Table IV.l shows a comparison among all six models

using the approximate MISE of the distribution function |

for sample size 100. The last column lists the mean of
the asymptotic distribution of the Cramer von Mises sta-
tistic, W2, normalized by the sample size (Ref 4 ). This
value is the MISE of the distribution function when the
empirical distribution function is used as the estimator.
Note that in all cases except for the Cauchy distribution,
Models 1, 2 and the three adaptive models outperform the
empirical distribution function in terms of MISE. Given
an underlying uniform distribution, Model 3 is the clear
choice. However, its poor performance for other distribu-
tions results from the fixed plotting positions based on
the entire sample. The excellent performance of the
adaptive models for the distributions considered is
especially encouraging. These results indicate that, on
the average, our nonparametric models are closer to the
true distribution function than the empirical distribution

function under the criterion of mean integrated square

error.
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For the density functions, a direct comparison of

our models with the estimators evaluated by Wegman was
made. We chose only to repeat the two continuous density
estimators tested, the naive estimator based on a uniform
kernel and the trigonometric estimator of Kronmal and
Tarter. For averade square error values of histogram
estimators, refer to Wegman (Ref 105). Table IV.2 gives

the approximate MISE values for the density estimators.

Note the competitive performance of our models of the
density functions. No one estimator is clearly superior.
Again the performance of the adaptive models is encouraging.

Remember that the motivation for the development
of this new nonparametric family of estimators was based
on modeling the distribution functions. The density esti-
mators are merely analytic derivatives of these distribu-
tion functions. Since differentiation is an unbounded
linear operator, one would suspect a large discrepancy
between a differentiated estimate and one specifically
designed to model the density function itself. The com-
parable performance of these new models against pure
density estimators demonstrates their versatility.

It should also be noted that the trigonometric
estimator introduced negative density values in samples
from the normal, Cauchy and exponential distributions.
Although the trigonometric density estimates 4o integrate

to unity over their finite support, usually the interval
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1, their utility is diminished by the negative

(X (1) X (n)
values. Conversely, both the kernel estimator, when the

kernel itself is chosen as a density function, and all of
the new nonparametric models do possess all the properties
of distribution functions.

The addition of the exponential distribution as an
asymmetric example is significant. The performance of the
adaptive models for both the distribution function and
density function indicate that the new nonparametric
approach also performs well over a very general class of
probability distributions.

A further comparison of the density estimators
was made for various sample sizes using the triangular
distribution. Table IV.3 lists the values of the approxi-
mate MISE and the standard errors. The competitive nature
of the new models, particularly the adaptive ones, is
again evident. Tables IV.4 through 1IV.7 show the per-
formance of Models 5 and 6 for various sample sizes and
distributions. Both the MISEs for the distribution func-
tion and the density function are compared. Tables 1IV.4
and IV.6 include the mean of the asymptotic distribution
of the normalized CVM statistic as a reference. These
two models are significant in that they will form the
bases for goodness of fit tests proposed in the next

chapter.
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Based on the calculated criterion values, we
derived empirical convergence rates for five of the models.

Normalized to criterion values at sample size 50,

Table IV.8 compares the empirical rates to convergence
rates of order n >, n '8, and n”!. The distribution
function models appear to converge at a rate near n—l.
This empirical result indicates that the smoothing process
introduced in Chapter 1III does not appreciably affect the
convergence of the estimators. Recall that the unsmoothed
estimators displayed uniform convergence. Now, we have
empirical evidence of the convergence of our distribution
function models. The density function estimates appear

5 and n~ 8. This rate

to converge at a rate between n
is not as rapid as the theoretical convergence rate of the

kernel estimate given by Rosenblatt or the approximate

convergence rate for the trigonometric estimate given by

Wegman (Refs 75 and 105). However, we have demonstrated

empirical convergence of our density estimators, a property

not analytically verifiable due to the differentiation

operation. While the convergence rates appear somewhat 31
slower, the previous tables show that the actual criterion ‘1
values of our model estimators are very close to the f
methods currently available. Further, the use of nonpara-
metric estimates for very large samples is a guestionable
procedure. Large samples are ideally suited to a para- i

metric approach, since the amount of information available
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should provide model discrimination. Thus, all of the
results of this analysis supports the use of the new non-
parametric models for small and intermediate sample sizes.
The results of investigations of samples of size 20 indi-
cate that the strength of these models may lie in small

sample analysis.

Graphical Comparisons

Much of the impetus for this research resulted
from the ability to analyze many different random samples
graphically. For criteria such as MISE, the accuracy of
the approximations becomes obscured when dealing with such
small quantities, at least for this author. MISE is also
an average error, so a graphical approach may give more :
insight as to the influence that various portions of the

density have on the mean value. For example, a graphical

analysis showed that while the MISE of the density function
for the exponential distribution using Model 3 was far
superior, the poor estimation of tail values resulted in

an extremely poor distribution function MISE. This observa-
tion calls to question the widely accepted use of MISE

as a density function estimation criterion. Relying solely
on MISE for the density function allows very poor esti-
mators to appear guite good. Throughout this study, we

have contended that density estimators should be compared

with respect to criteria evaluation at their corresponding




i distribution functions as well as at the density function.
J A graphical examination is a simple way to expose these
ill-conceived estimators.

To demonstrate the versatility of the new non-
parametric estimators, we chose random samples of size 100
from the double exponential, uniform, triangular, Cauchy,
and exponential distributions. The nonparametric model

used in each case is the one with the smallest approximate

MISE listed in Table IV.1l. Figqures 4.1 through 4.10
present the distribution function and density function
approximations plotted against the true underlying pro-
cesses. Table 1IV.9 lists the values of the approximate
MISEs for the distribution and density functions for each
random sample. Many other samples and distribution func-
tions have been examined for different sample sizes. Other
probability distributions analyzed included various beta
distrib<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>